B Add C Add D Cha E Edit 1 re ksr	d case o wing. E d device d softwa anges in torial co edrawn v	ditoria type re dat	al char 28 to c	U. Ad nges th	d ven							DA	TE (YF	R-MO-	DA)		APPR	OVED)
B Add C Add D Cha E Edit 1 re ksr F Add	wing. E I device I softwa anges in torial co	ditoria type re dat	al char 28 to c	nges th															
C Ado D Cha E Edit 1 re ksr F Ado	l softwa anges in torial co	re dat		drawin		out.	AGE N	umber	60395	to			89-0	8-07		M. A	. Frye		
D Cha E Edit 1 re ksr F Add	anges in torial co		ta prot		g. Edi	itorial	chang	es thro	bughou	ıt.			93-0	1-05		M. A	. Frye		
D Cha E Edit 1 re ksr F Add	anges in torial co			ect to	drawir	na. Up	odated	boiler	plate.				97-0	4-06		Rav	mond	Monni	n
E Edit 1 re ksr	torial co	acco	rdance											8-12			mond		
F Add	torial co edrawn y												97-0	0-12					
Auc		rrectic with 32	on to p 2 lead:	age 1, s vs 44	corre 4 leads	ction of a s and of	of num dimen:	ber of sion ta	pages ible co	. Fig rrecte	ure d.		04-0	6-04		Rayı	mond	Monni	n
	l vendo erplate						3DTT2	to dra	awing.	Updat	ed		10-0	3-25		Cha	rles Sa	affle	
G Upo	date dra	wing t	to mee	et curre	ent MI	L-PRF	-3853	5 requ	iremer	nts g	lg		17-0	7-20		Cha	rles Sa	affle	
THE ORIGINAL FIF REV G SHEET 15 REV STATUS OF SHEETS PMIC N/A	G G 16	GE O	G 18 RE\ SHE PRE	G 19 /	G 20 D BY	HAS E G 21 G 1	G G G G 22 G 2	G G G G 3	ACED.	G 5	G 6	G 7	G 8	G 9	G 10	G 11	G 12	G 13	G 14
STANDA MICROCIR				CKED							CC	DLA I DLUM <u>p://ww</u>	BUS,	OHIC	O 432	218-39	990		
DRAWIN THIS DRAWING IS A FOR USE BY DEPARTMEN AND AGENCIES DEPARTMENT OF	AVAILAE ALL NTS OF THE		Micl	PROVE hael A	. Frye)VAL D	DATE		DI	GIT	AL,	IRC CN 1, M	105	5 8k	XX	8-B	IT	CO	N
AMSC N//	٩		REVI	SION L	88-0_ EVEL_ (SIZ A		-	.GE CC			59	62-	875	514	
									SHE	T									

DSCC FORM 2233 APR 97

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

<u>5962-87514</u>

1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.

<u>A</u>

<u>X</u>

1.2 Part or Identifying Number (PIN). The complete PIN shall be as shown in the following example:

01

1.2.1 Device type(s)	. The devic Generic	e type(s) shall identify th	e circuit fui Access	nction as fol Write	lows: Write	End of write	
Device type	<u>number</u>	Circuit function	time_	speed	mode	indicator	Endurance
01 02	(see 6.4)	(8K X 8 EEPROM)	350 ns	10 ms	byte/page	DATA polling	10,000 cycl
02 03			300 ns 250 ns	10 ms 10 ms	byte/page byte/page	DATA polling DATA polling	10,000 cyc 10,000 cyc
03			200 ns	10 ms	byte/page	DATA polling	10,000 cycl
05			250 ns	10 ms	byte/page	DATA polling	100,000 cyc
06			350 ns	2 ms	byte/page	DATA polling	10,000 cycl
07			300 ns	2 ms	byte/page	DATA polling	10,000 cycl
08			250 ns	2 ms	byte/page	DATA polling	10,000 cycl
09			200 ns	2 ms	byte/page	DATA polling	10,000 cycl
10			120 ns	2 ms	byte/page	DATA polling	10,000 cyc
11			90 ns	2 ms	byte/page	<u>DATA</u> polling	10,000 cyc
12			70 ns	2 ms	byte/page	DATA <u>polling</u>	10,000 cyc
13			350 ns	1 ms	byte	RDY/ <u>BUSY</u>	10,000 cycl
14			300 ns	1 ms	byte	RDY/ <u>BUSY</u>	10,000 cycl
15 16			250 ns	1 ms	byte	RDY/ <u>BUSY</u>	10,000 cycl 10,000 cycl
17			200 ns 150 ns	1 ms 1 ms	byte byte	RDY/ <u>BUSY</u> <u>RDY/</u> BUSY	10,000 cyc
18			350 ns	1 ms	byte	DATA polling	10,000 cyc
19			300 ns	1 ms	byte	DATA polling	10,000 cycl
20			250 ns	1 ms	byte	DATA polling	10,000 cycl
21			200 ns	1 ms	byte	DATA polling	10,000 cycl
22			150 ns	1 ms	byte	DATA polling	10,000 cycl
23			350 ns	10 ms	byte/page	RDY/ <u>BUSY</u>	10,000 cycl
24			300 ns	10 ms	byte/page	RDY/ <u>BUSY</u>	10,000 cycl
25			250 ns	10 ms	byte/page	RDY/ <u>BUSY</u>	10,000 cycl
26			200 ns	10 ms	byte/page	RDY/ <u>BUSY</u>	10,000 cycl
27 28			250 ns 200 ns	10 ms 200 μs	byte/page byte	RDY/ <u>BUSY</u> RDY/BUSY	100,000 cyc 10,000 cyc
1.2.2 Case outline(s	<u>)</u> . The case	outline(s) shall be as de	esignated ir	n MIL-STD-	1835 and as f	ollows:	
Outline letter		Descriptive designator		Terminals		Package style	
U		See figure 1		32	"J"	leaded cerquad	package
Х		GDIP1-T28 or CDIP2-T	28	28		al-in-line	
Y		CQCC1-N32		32		ctangular leadles	ss chip carrier
Z		CDFP4-F28		28	Fia	t pack	
	STANDA			SIZE A			5962-875
		DRAWING		A			-
	AND AND				REVISION		SHEET
(-(-))	IBUS OHIC	43218-3990				G	2

1.3 Absolute maximum ratings. 1/

Supply voltage range (V _{CC}) Storage temperature range	
Maximum power dissipation (P_D)	
Lead temperature (soldering, 10 seconds)	
Junction temperature (T _J) <u>2</u> /	
Thermal resistance, junction-to-case (OJC)	See MIL-STD-1835
Input voltage range (VL, VH)	0.3 V dc to +6.25 V dc
Data retention	10 years (minimum)
Endurance:	
Device types 01 through 04, 06 through 26, and 28	
Device types 05 and 27	100,000 cycles/byte (minimum)
Chip clear voltage (V _H)	13.0 V dc

1.4 Recommended operating conditions. 1/

Supply voltage range (V _{CC})	+4.5 V dc to +5.5 V dc
Case operating temperature range (Tc)	55°C to +125°C
Input voltage, low range (VIL)	
Input voltage, high range (VIH)	+2.0 V dc to V _{cc} +0.3 V dc
Chip clear voltage range (V _H)	12 V dc to 13 V dc

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 -	Test Method Standard Microcircuits.
MIL-STD-1835 -	Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at <u>http://quicksearch.dla.mil/</u> or from the Standardization Document Order Desk, 700 Robins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

2/ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with method 5004 of MIL-STD-883.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87514
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	3

<u>1</u>/ All voltages are referenced to V_{SS} (ground).

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.

3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.2 herein and figure 1.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

3.2.3 <u>Truth table for unprogrammed devices</u>. The truth table for unprogrammed devices shall be as specified on figure 3.

3.2.3.1 <u>Programmed devices</u>. The truth table for programmed devices shall be as specified by an attached altered item drawing.

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.

3.5.1 <u>Certification/compliance mark</u>. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used.

3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change</u>. Notification of change to DLA Land and Maritime-VA shall be required for any change that affects this drawing.

3.9 <u>Verification and review</u>. DLA Land and Maritime, DLA Land and Maritime's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Processing EEPROMS</u>. All testing requirements and quality assurance provisions herein shall be satisfied by the manufacturer prior to delivery.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87514
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	4

3.10.1 <u>Erasure of EEPROMS</u>. When specified, devices shall be erased in accordance with the procedures and characteristics specified in 4.4.1. Devices shall be shipped in the erased (logic "1's) and verified state unless otherwise specified.

3.10.2 <u>Programmability of EEPROMS</u>. When specified, devices shall be programmed to the specified pattern using the procedures and characteristics specified in 4.4.

3.10.3 <u>Verification of erasure or programmability of EEPROMS</u>. When specified, devices shall be verified as either programmed to the specified pattern or erased. As a minimum, verification shall consist of reading the device in accordance with the procedures and characteristics specified in 4.4.2. Any bit that does not verify to be in the proper state shall constitute a device failure, and shall be removed from the lot.

3.12 <u>Endurance</u>. A reprogrammability test shall be completed as part of the vendor's reliability monitors. This reprogrammability test shall be done for initial characterization and after any design or process changes which may affect the reprogrammability of the device. The methods and procedures may be vendor specific, but shall guarantee the number of program/erase endurance cycles listed in section 1.3 herein over the full military temperature range. The vendor's procedure shall be kept under document control and shall be made available upon request of the acquiring or preparing activity, along with test data.

3.13 <u>Data retention</u>. A data retention stress test shall be completed as part of the vendor's reliability monitors. This test shall be done for initial characterization and after any design or process change, which may affect data retention. The methods and procedures may be vendor specific, but shall guarantee the number of years listed in section 1.3 herein over the full military temperature range. The vendor's procedure shall be kept under document control and shall be made available upon request of the acquiring or preparing activity, along with test data.

4. VERIFICATION

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Devices shall be burned-in containing a checkerboard pattern or equivalent.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

- 4.3.1 Group A inspection.
- a. Tests shall be as specified in table II herein.
- b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroup 4 (C₁ and C₀ measurements) shall be measured only for the initial test and after process or design changes which may affect capacitance. Sample size is fifteen devices with no failures, and all input and output terminals tested.
- d. Subgroups 7 and 8 shall include verification of the truth table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87514
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	5

	TA	ABLE I. Electrical performance cha	racteristics.				
Test	Symbol	$\begin{array}{c} \mbox{Conditions } \underline{1} / \ \underline{2} / \\ -55^\circ \mbox{C} \leq \mbox{T}_{\mbox{C}} \leq +125^\circ \mbox{C} \\ \mbox{V}_{\mbox{SS}} = 0 \ \mbox{V}, \ 4.5 \ \mbox{V} \leq \mbox{V}_{\mbox{CC}} \leq 5.5 \ \mbox{V}, \\ \mbox{unless otherwise specified} \end{array}$	Group A subgroups	Device type	Lir	nits	Unit
					Min	Max	
Supply current	lcc	$\overline{CE} = \overline{OE} = V_{IL}, \ \overline{WE} = V_{IH},$	1, 2, 3	01-05, 23-27		60	mA
(active)		All I/O's = open,		06-12		80	
		Inputs = V_{CC} = 5.5 V		13-22, 28		45	
Supply current	Icc1	$\overline{CE} = V_{IH}, \ \overline{OE} = V_{IL},$	1, 2, 3	All		3	mA
(TTL standby)		All I/O's = open,					
		Inputs = X					
Supply current	I _{CC2}	$\overline{CE} = V_{CC} - 0.3 V,$	1, 2, 3	01-12, 23-27		250	μΑ
(CMOS standby)		All I/O's = open,		13-22,		150	
		inputs = V_{IL} to V_{CC} - 0.3 V		28			
Input leakage (high)	IIH	V _{IN} = 5.5 V	1, 2, 3	All	-10	10	μΑ
Input leakage (low)	IIL	V _{IN} = 0.1 V	1, 2, 3	All	-10	10	μΑ
Output leakage (high) <u>3</u> /	Іонz	$V_{OUT} = 5.5 \text{ V}, \ \overline{CE} = V_{IH}$	1, 2, 3	All	-10	10	μA
Output leakage (low) 3/	lolz	$V_{OUT} = 0.1 \text{ V}, \ \overline{CE} = V_{IH}$	1, 2, 3	All	-10	10	μΑ
Input voltage low	VIL		1, 2, 3	All	-0.1	0.8	V
Input voltage high	Vih		1, 2, 3	All	2.0	V _{CC} +0.3 V	V
Output voltage low	Vol	$\label{eq:IOL} \begin{array}{l} I_{OL} = 2.1 \text{ mA}, V_{IH} = 2.0 \text{ V}, \\ V_{CC} = 4.5 \text{ V}, V_{IL} = 0.8 \text{ V} \end{array}$	1, 2, 3	All		0.45	V
Output voltage high	Vон	$\begin{split} I_{OH} = -400 \ \mu\text{A}, \ V_{IH} = 2.0 \ V, \\ V_{CC} = 4.5 \ V, \ V_{IL} = 0.8 \ V \end{split}$	1, 2, 3	All	2.4		V

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING	
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	

SIZE

	TABLE I	. Electrical performanc	ce characteris	<u>stics</u> - continu	ued.			
Test	Symbol	$\begin{array}{l} \mbox{Conditions } \underline{1} / \\ -55^\circ \mbox{C} \leq T_{\mbox{C}} \leq +1 \\ \mbox{V}_{\mbox{SS}} = 0 \mbox{ V}, \mbox{ 4.5 } \mbox{V} \leq \mbox{V}_{\mbox{C}} \\ \mbox{unless otherwise s} \end{array}$	25°C cc <u><</u> 5.5 V,	Group A subgroups	Device type	Lir	nits	Unit
						Min	Max	
Input capacitance <u>4</u> / <u>5</u> /	Cı	$V_I = 0 V, V_{CC} = 5.0 V,$ $T_A = +25^{\circ}C, f = 1 MH;$ see 4.3.1c		4	All		10	pF
Output capacitance <u>4</u> / <u>5</u> /	Co	$V_0 = 0 V, V_{CC} = 5.0 V$ $T_A = +25^{\circ}C, f = 1 MH$ see 4.3.1c		4	All		10	pF
Functional tests		See 4.3.1d		7,8A,8B	All			
Read cycle time <u>6</u> /	tavav	See figure 4		9, 10, 11	01,06,13 18,23	350		ns
					02,07,14 19,24	300		
					03,05,08, 15,20,25, 27	250		
					04,09,16, 21,26,28	200		
					17,22 10	150 120		
					11 12	90 70		
Address access time	tavqv		-	9, 10, 11	01,06,13 18,23		350	ns
					02,07,14 19,24		300	
					03,05,08, 15,20,25, 27		250	
					04,09,16, 21,26,28		200	
					17,22		150	
					10		120	
					11		90	
					12		70	
See footnotes at end of table.								
STAN MICROCIRCI			SIZE A				5962-8	7514

REVISION LEVEL G

SHEET

7

DLA LAND AND MARITIME

COLUMBUS, OHIO 43218-3990

Test	Symbol	$-55^{\circ}C \le T_{C} \le +125^{\circ}C$ Vss = 0 V, 4.5 V \le Vcc \le 5.5 V,	Group A subgroups	Device type	Lir	nits	Unit
		unless otherwise specified			Min	Max	
Chip enable	telqv	See figure 4	9, 10, 11	01,06,13 18,23		350	ns
access time				02,07,14 19,24		300	_
				03,05,08, 15,20,25, 27		250	
				04,09,16, 21,26,28		200	
				17,22		150	
				10		120	
				11		90	
				12		70	
Output enable access time	t _{OLQV}		9, 10, 11	01-05, 13-22, 23-28		100	ns
				06-12		50	-
Chip enable to output in low Z <u>5</u> /	t _{ELQX}		9, 10, 11	All	10		ns
Chip disable to output in high Z <u>5</u> /	tehqz		9, 10, 11	01-08, 13-15, 18-20, 23-27		80	ns
				09-12, 16,17,21 22,28		55	
Output enable to output in low Z <u>5</u> /	tolax		9, 10, 11	All	10		ns
Output disable to output in high Z <u>5</u> /	t _{онаz}		9, 10, 11	01-08, 13-15, 18-20, 23-27		80	ns
				09-12, 16,17,21 22,28		55	
Output hold from address change <u>6</u> /	tavqx		9, 10, 11	All	0		ns

TABLE I. Electrical performance characteristics - continued.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

TABLE 1. <u>Lieundar penormance characteristics</u> - continued.								
Symbol	$\begin{array}{l} \mbox{Conditions} \ \underline{1}/\ \underline{2}/ \\ -55^\circ C \leq T_C \leq +125^\circ C \\ V_{SS} = 0 \ V, \ 4.5 \ V \leq V_{CC} \leq 5.5 \ V, \\ \mbox{unless otherwise specified} \end{array}$	Group A subgroups	Device type	Lin Min	nits Max	Unit		
t _{pu}		9, 10, 11	All		250	ns		
t _{pd}		9, 10, 11	All		50	ns		
twhwL1	See figures 5 and 6	9, 10, 11	01-05, 23-27		10	ms		
			06-12		2.0			
tehel1			13-22		1.0			
			28		0.2			
t _{AVEL}	See figures 5, 6 and 7	9, 10, 11	All	20		ns		
tavwl								
t _{ELAX}		9, 10, 11	All	150		ns		
t _{WLAX}								
twlel		9, 10, 11	All	0		ns		
t _{ELWL}								
twнен		9, 10, 11	All	0		ns		
	Symbol tpu tpd twhwl1 tehel1 tavel tavwl telax twlax twlel telwl	SymbolConditions $\frac{1}{2}$ -55°C \leq Tc \leq +125°C Vss = 0 V, 4.5 V \leq Vcc \leq 5.5 V, unless otherwise specifiedtputputpdtwnwL1teheL1See figures 5 and 6teheL1See figures 5, 6 and 7tavwLSee figures 5, 6 and 7twLaxtwLaxtwLLLenaxtwLLLenaxtwLLLenaxtwLLLenaxtwLLLenaxtwLLLenaxtwLLLenaxtwLLLenaxtwLLLenaxtwLLLenaxtwLLLenaxtwLLLenaxtwLLLenaxtwLLLenaxtwLLLenaxtwLLenax <td>SymbolConditions $\frac{1}{2}$ -55°C \leq Tc \leq +125°C Vss = 0 V, 4.5 V \leq Vcc \leq 5.5 V, unless otherwise specifiedGroup A subgroupstpu9, 10, 11tpd9, 10, 11tpd9, 10, 11twHwL1See figures 5 and 69, 10, 11teHeL19taveL tavwLSee figures 5, 6 and 79, 10, 11teLAX twLAX9, 10, 11twLEL teLWL9, 10, 11</td> <td>SymbolConditions $\frac{1}{2}$ $-55^{\circ}C \le T_{c} \le +125^{\circ}C$ $V_{SS} = 0 V, 4.5 V \le V_{CC} \le 5.5 V,$ unless otherwise specifiedGroup A subgroupsDevice typet_{pu}9, 10, 11Allt_{pd}9, 10, 11Allt_{pd}9, 10, 11AlltwnwL1See figures 5 and 69, 10, 1101-05, 23-27teheL106-1213-22tavveLSee figures 5, 6 and 79, 10, 11AllteLAX9, 10, 11AlltwLax9, 10, 11AlltwLeL9, 10, 11AllteLAX9, 10, 11AlltwLeL9, 10, 11AlltwLeL9, 10, 11All</td> <td>SymbolConditions $\frac{1}{2}$ -55°C \leq Tc \leq +125°C Vss = 0 V, 4.5 V \leq Vcc \leq 5.5 V, unless otherwise specifiedGroup A subgroupsDevice typeLir Mintpu9, 10, 11All9, 10, 11All1tpd9, 10, 11All9, 10, 11All1twnwL1See figures 5 and 69, 10, 1101-05, 23-2706-121teHeL113-2228111twvkuSee figures 5, 6 and 79, 10, 11All20teLAx9, 10, 11All150twiteL19, 10, 11All0twiteL9, 10, 11All01twiteL9, 10, 11All0</td> <td>Verticity SymbolConditions $\frac{1}{2}/2/$ -55°C \leq Tc \leq +125°C VSS = 0 V, 4.5 V \leq Vcc \leq 5.5 V, unless otherwise specifiedGroup A subgroupsDevice typeLimitstpu9, 10, 11All250tpd9, 10, 11All250twnwL1See figures 5 and 69, 10, 11All10tenet1See figures 5, 6 and 79, 10, 11All20telAXSee figures 5, 6 and 79, 10, 11All20telAX9, 10, 11All150twile9, 10, 11All0</td>	SymbolConditions $\frac{1}{2}$ -55°C \leq Tc \leq +125°C Vss = 0 V, 4.5 V \leq Vcc \leq 5.5 V, unless otherwise specifiedGroup A subgroupstpu9, 10, 11tpd9, 10, 11tpd9, 10, 11twHwL1See figures 5 and 69, 10, 11teHeL19taveL tavwLSee figures 5, 6 and 79, 10, 11teLAX twLAX9, 10, 11twLEL teLWL9, 10, 11	SymbolConditions $\frac{1}{2}$ $-55^{\circ}C \le T_{c} \le +125^{\circ}C$ $V_{SS} = 0 V, 4.5 V \le V_{CC} \le 5.5 V,$ unless otherwise specifiedGroup A subgroupsDevice type t_{pu} 9, 10, 11All t_{pd} 9, 10, 11All t_{pd} 9, 10, 11AlltwnwL1See figures 5 and 69, 10, 1101-05, 23-27teheL106-1213-22tavveLSee figures 5, 6 and 79, 10, 11AllteLAX9, 10, 11AlltwLax9, 10, 11AlltwLeL9, 10, 11AllteLAX9, 10, 11AlltwLeL9, 10, 11AlltwLeL9, 10, 11All	SymbolConditions $\frac{1}{2}$ -55°C \leq Tc \leq +125°C Vss = 0 V, 4.5 V \leq Vcc \leq 5.5 V, unless otherwise specifiedGroup A subgroupsDevice typeLir Mintpu9, 10, 11All9, 10, 11All1tpd9, 10, 11All9, 10, 11All1twnwL1See figures 5 and 69, 10, 1101-05, 23-2706-121teHeL113-2228111twvkuSee figures 5, 6 and 79, 10, 11All20teLAx9, 10, 11All150twiteL19, 10, 11All0twiteL9, 10, 11All01twiteL9, 10, 11All0	Verticity SymbolConditions $\frac{1}{2}/2/$ -55°C \leq Tc \leq +125°C VSS = 0 V, 4.5 V \leq Vcc \leq 5.5 V, unless otherwise specifiedGroup A subgroupsDevice typeLimitstpu9, 10, 11All250tpd9, 10, 11All250twnwL1See figures 5 and 69, 10, 11All10tenet1See figures 5, 6 and 79, 10, 11All20telAXSee figures 5, 6 and 79, 10, 11All20telAX9, 10, 11All150twile9, 10, 11All0		

TABLE I. Electrical performance characteristics - continued.

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	SIZE A		5962-87514
		REVISION LEVEL G	SHEET 9

		Conditions 1/ 2/					T
Test	Symbol	$\begin{array}{l} \mbox{Conditions} \ \underline{1}/\ \underline{2}/\\ -55^\circ C \leq T_C \leq +125^\circ C\\ \mbox{V}_{SS} = 0 \ \mbox{V}, \ 4.5 \ \mbox{V} \leq V_{CC} \leq 5.5 \ \mbox{V},\\ \mbox{unless otherwise specified} \end{array}$	Group A subgroups		Lin	nits	Unit
	i 				Min	Max	1
OE setup time <u>6</u> /	tohel tohwl	See figure 5, 6, or 7 as applicable	9, 10, 11	All	20		ns
OE hold time	twhol		9, 10, 11	All	20		ns
WE pulse width 6/	t _{ELEH} twlwн		9, 10, 11	All	150		ns
Data setup time <u>6</u> /	tdveн		9, 10, 11	All	50		ns
	t _{DVWH}			<u> </u>	L	<u> </u>	
Data hold time <u>6</u> /	t _{EHDX} t _{WHDX}		9, 10, 11	All	10		ns
Byte load cycle	tehel2 twhwL2	See figures 5 or 6	9, 10, 11	All	0.2	2	μs
Last byte loaded to data polling <u>6</u> /	twhel	See figure 5	9, 10, 11	06-12, 18-22		200	ns
CE setup time <u>6</u> /	telwl	See figure 5	9, 10, 11	All	1		μS
Output setup time <u>6</u> /	t _{ovhwL}	See figure 8	9, 10, 11	All	1		μs
CE hold time 6/	t _{EHWH}	See figure 6	9, 10, 11	All	1		μS
OE hold time <u>6</u> /	twнон	See figure 8, configuration A or B	9, 10, 11	All	1		μS
Erase time <u>6</u> /	t _{ohav}		9, 10, 11	01-05, 23-27	200		ms
Chip erase time 6/	t _{WLWH2}	See figure 8, configuration A or B	9, 10, 11	01-05, 23-27	150		ns
				06- 22,28	10		ms
High voltage <u>6</u> /	VH		9, 10, 11	All	12	13	V
Time to device busy	t _{EHRL} t _{WHRL}	See figures 6 and 7	9, 10, 11	13- 17,28		50	ns
				23-27		100	
Write cycle time	t _{ELRH}		9, 10, 11	13-		1	ms
RDY/BUSY	twlrh			17,28		ļ	
····			0.10.11	23-27		10	
Maximum time to valid data after $\overline{WE} / \overline{CE}$ low $\underline{6}/$	t _{WLDV} t _{ELDV}		9, 10, 11	13- 22,28		1	μs

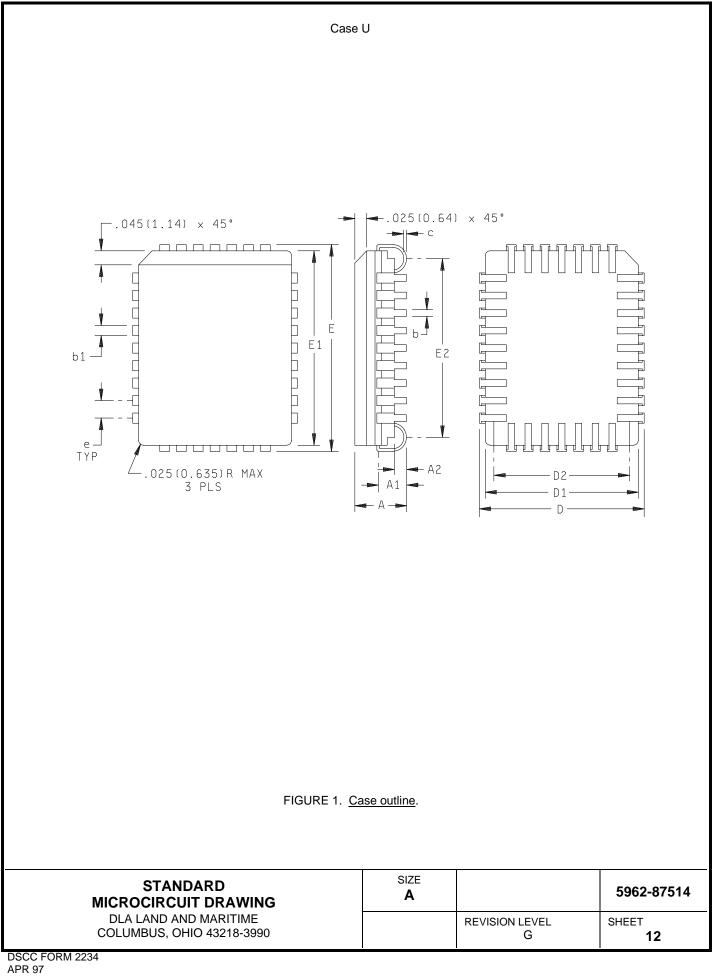
See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME

DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

SIZE A		5962-87514
	REVISION LEVEL G	SHEET 10

TABLE I. Electrical performance characteristics - continued.


- 1/ DC and read mode.
- 2/ Equivalent ac test conditions: Device types: 01 through 09 and 13 through 28. Output load: 1 TTL gate and C1 = 100 pF, Input rise and fall times ≤ 10 ns. Input pulse levels: 0.4 V and 2.4 V. Timing measurements reference levels: Inputs 1 V and 2 V. Outputs 0.8 V and 2 V.

Device types: 10 through 12. Output load: 1 TTL gate and C1 = 30 pF, Input rise and fall times \leq 5 ns. Input pulse levels: 0.4 V and 2.4 V.

Inputs 1 V and 2 V. Outputs 0.8 V and 2 V.

- 3/ Connect all address inputs and OE to VIH and measure IOLZ and IOHZ with the output under test connected to VOUT.
- $\frac{1}{4}$ All pins not being tested are to be open.
- 5/ Tested initially and after any design or process changes that affect that parameter, and therefore guaranteed to the limits specified in table I.
- 6/ Tested by application of specified timing signals and conditions, see footnote 2/.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87514
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	11

Dimensions							
Ltr	Incl	hes	Millimeters				
	Min	Max	Min	Max			
А	.140	.167	3.56	4.24			
A ₁	.073	.103	1.85	2.62			
A ₂	.027	.045	0.69	1.14			
с	.006	.010	0.15	0.25			
D	.485	.495	12.32	12.57			
D ₁	.445	.465	11.30	11.81			
D ₂	.390	.430	9.91	10.92			
E	.585	.595	14.86	15.11			
E1	.545	.565	13.84	14.35			
E2	.490	.530	12.45	13.46			
е	.050 T	ΥP	1.27 TY	Έ			
b	.017	.021	0.43	0.53			
b1	.026	.032	0.66	0.81			
N		32					

Case U

NOTES:

Controlling dimensions are inches, metric provided for convenience.
Dimensions D₁ and E₁ do not include glass protrusion. Glass protrusion to be .010 inch (0.25 mm) maximum.

3. All dimensions and tolerances include lead trim offset and lead finish.

FIGURE 1. Case outline - continued.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	SIZE A		5962-87514
		REVISION LEVEL G	SHEET 13

Device types	01 th	rough 28	
Case outlines	X and Z	U and Y	
Terminal number	Termir	Terminal symbol	
1	NC (See note)	NC	
2	A ₁₂	NC (See note)	
3	A ₇	A ₁₂	
4	A ₆	A ₇	
5	A ₅	A ₆	
6	A4	A ₅	
7	A ₃	A4	
8	A ₂	A ₃	
9	A ₁	A2	
10	Ao	A ₁	
11	I/O ₀	Ao	
12	I/O ₁	NC	
13	I/O ₂	I/O ₀	
14	GND	I/O ₁	
15	I/O ₃	I/O ₂	
16	I/O ₄	GND	
17	I/O ₅	NC	
18	I/O ₆	I/O ₃	
19	I/O ₇	I/O ₄	
20	CE	I/O ₅	
21	A ₁₀	I/O ₆	
22	ŌĒ	I/O7	
23	A ₁₁	CE	
24	A ₉	A ₁₀	
25	A ₈	ŌE	
26	NC	NC	
27	WE	A ₁₁	
28	Vcc	A ₉	
29		A ₈	
30		NC	
31		WE	
32		Vcc	

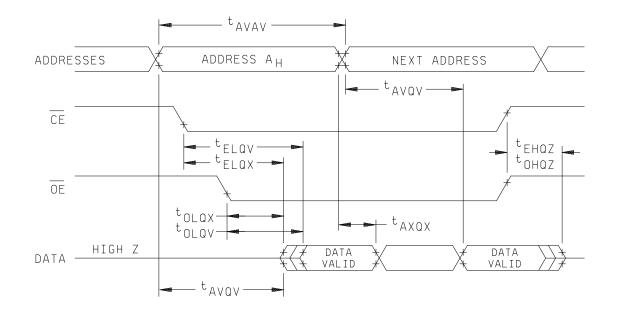
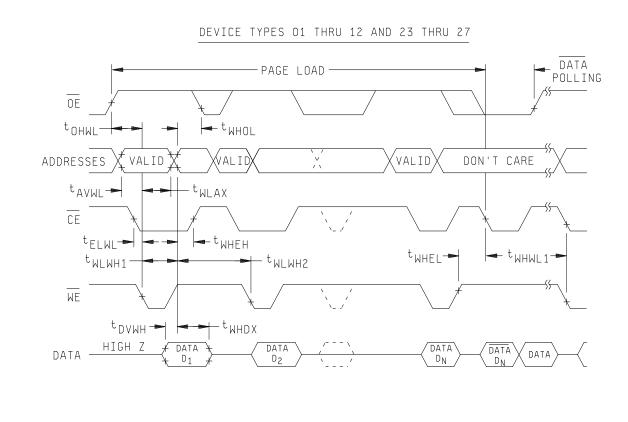

NOTE: For device types 13 through 17 and 23 through 28, this NC is replaced by RDY/\overline{BUSY} .

FIGURE 2. <u>Terminal connections</u>.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87514
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	14

Mode	CE	ŌE	WE	I/O	Device types
Read	VIL	VIL	Vін	Dout	All
Chip clear	VIL	V _H	VIL	х	All
Byte write	VIL	Vін	VIL	Data in	All
Write inhibit	х	VIL	Х	High Z/Dout	All
Write inhibit	х	Х	Vih	High Z/D _{OUT}	All
Standby	VIH	Х	Х	High Z	All

FIGURE 3. Truth table.

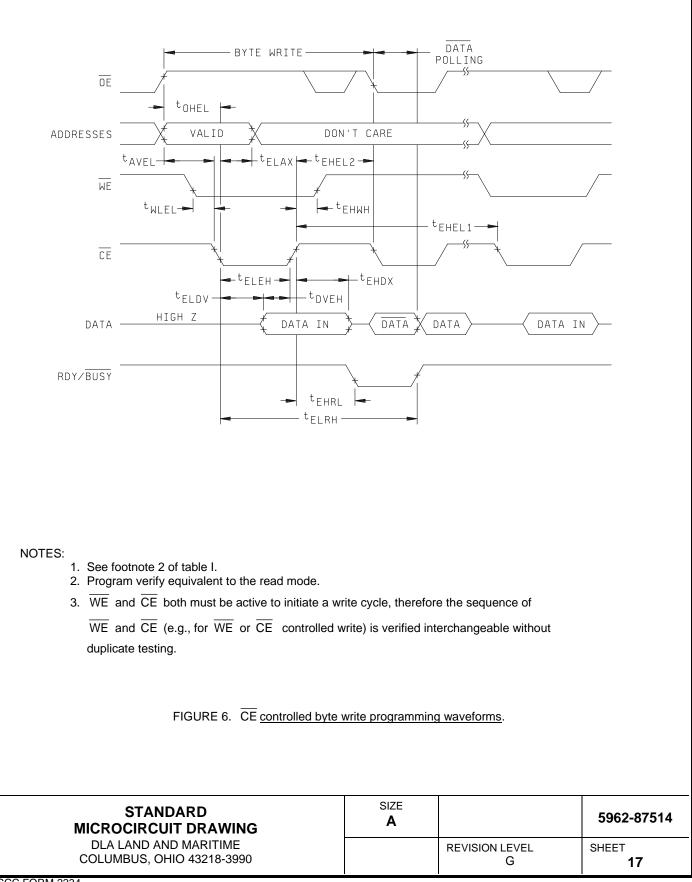


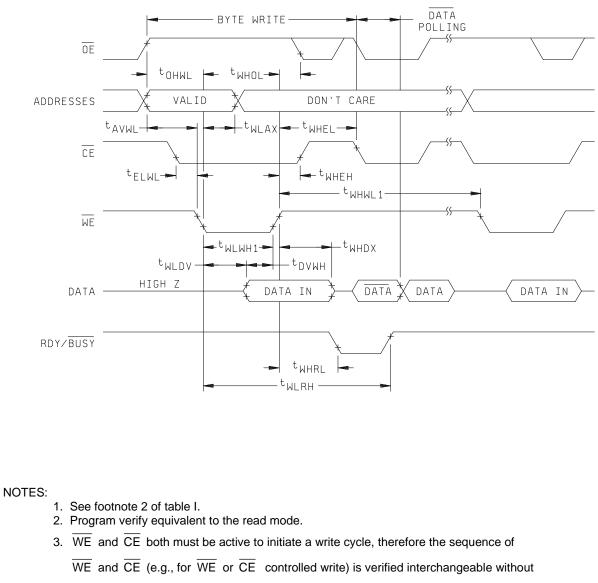
NOTES:

- 1. V_{CC} shall be applied simultaneously or after \overline{WE} and removed simultaneously or before \overline{WE} . 2. See footnote 2 of table I.

FIGURE 4. Read cycle timing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87514
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 15

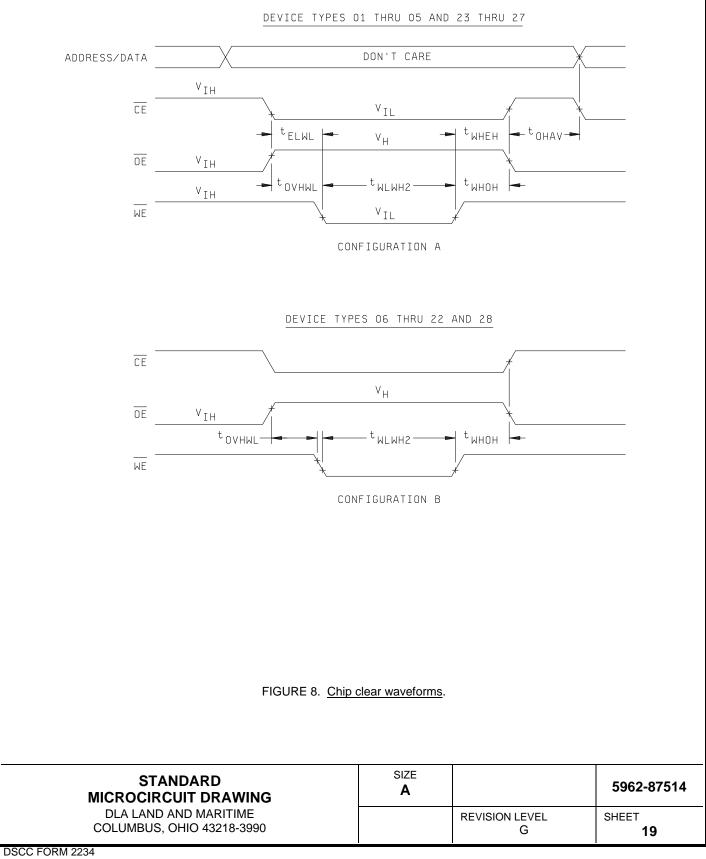

NOTES:

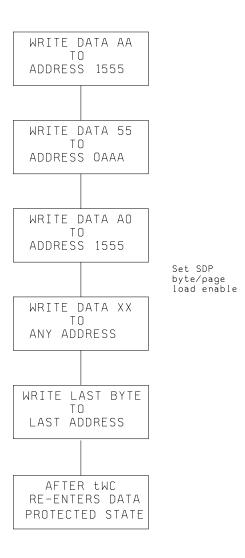

- 1. See footnote 2 of table I.
- 2. Program verify equivalent to the read mode.
- 3. Page load is 1 to 64 bytes of data for device types 01 through 12, and 23 through 27.
- 4. WE is noise protected. Less than 20 ns write pulse will not activate a write cycle.
- 5. $\overline{\text{WE}}$ and $\overline{\text{CE}}$ both must be active to initiate a write cycle, therefore the sequence of

 $\overline{\text{WE}}$ or $\overline{\text{CE}}$ (e.g., for $\overline{\text{WE}}$ or $\overline{\text{CE}}$ controlled write) is verified interchangeable without duplicate testing.

FIGURE 5. Page write programming waveforms.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87514
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 16

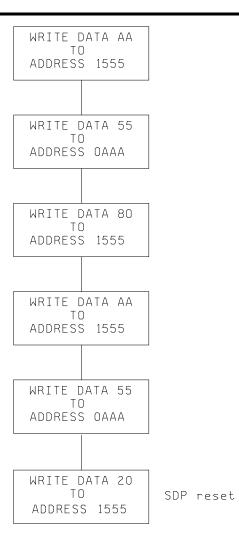




duplicate testing.

FIGURE 7. WE controlled byte write programming waveforms.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87514
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	18



NOTES:

- 1. Set software data protection timings are referenced to \overline{WE} or \overline{CE} inputs, whichever is last to go low, and the WE or CE inputs, whichever is first to go high.
- 2. The command sequence must conform to the page write timing.
- 3. The command sequence and subsequent data must conform to the page write timing.

FIGURE 9. Set software data protect and software protected write algorithm (device types 01- 05 and 08 - 12).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87514
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	20

NOTES:

- 1. Reset software data protection timings are referenced to \overline{WE} or \overline{CE} inputs, whichever is last to go low, and the \overline{WE} or \overline{CE} inputs, whichever is first to go high.
- 2. The command sequence must conform to the page write timing.

FIGURE 10. Reset software data protect algorithm (device types 01- 05 and 08 - 12).

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	SIZE A		5962-87514
		REVISION LEVEL G	SHEET 21

_	
	Subgroups <u>1/ 2</u> /
MIL-STD-883 test requirements	(in accordance with MIL-STD-883, method 5005, table I)
Interim electrical parameters	1, 7, 9,
(method 5004)	or
	2, 8A, 10
Final electrical test parameters	1*, 2, 3, 7*, 8,
(method 5004)	9, 10, 11 <u>3</u> /
Group A test requirements	1, 2, 3, 4**, 7,
(method 5005)	8, 9, 10, 11 <u>4</u> / <u>5</u> /
Groups C and D end-point electrical	1, 2, 3, 7,
parameters (method 5005)	8, 9, 10, 11

TABLE II. Electrical test requirements.

<u>1</u>/ Any or all subgroups may be combined when using multifunction testers.

2/ For all electrical tests, the device shall be programmed to the data pattern specified.

- $\overline{3}/$ (*) Indicates PDA applies to subgroups 1 and 7.
- 4/ Subgroups 7 and 8 shall consist of writing and reading the data pattern specified in accordance with the limits of table I subgroups 9, 10, and 11.
- 5/ (**) Indicates that subgroup 4 will only be performed during initial qualification and after design or process changes (see 4.3.1c).

4.3.2 <u>Group C inspection</u>. The group C inspection end-point electrical parameters shall be as specified in table IIA herein. The following additional criteria shall apply.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.3.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein.

4.4 <u>Programming procedure</u>. The following procedure shall be followed when programming (Write) is performed. The waveforms and timing relationships shown on figure 5 (per appropriate device type) and the conditions specified in table I shall be adhered to. Information is introduced by selectively programming a TTL low or TTL high on each I/O of the address desired. Functionality shall be verified at all temperatures (group A, subgroups 7 and 8) by programming all bytes of each device and verifying the pattern used.

4.4.1 <u>Erasing procedure</u>. There are two forms of erasure, chip and byte, whereby all bits or the address selected will be erased to a TTL high.

- a. Chip erase is performed in accordance with the waveforms and timing relationships shown on figure 8 (in accordance with appropriate device type) and the conditions specified in table I.
- b. Byte erase is performed in accordance with the waveforms and timing relationships shown on figure 5 (in accordance with appropriate device type) and the conditions specified in table I.

4.4.2 <u>Read mode operation</u>. The waveforms and timing relationships shown on figure 4 and the conditions specified in table I shall be applied when reading the device. Pattern verification utilizes the read mode.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87514
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	22

4.4.3 <u>RDY/BUSY</u>. While the write operation is in progress, the RDY/BUSY output is at a TTL low. An internal timer times out the required byte write time and at the end of this time, the device signals the RDY/BUSY pin to a TTL high. The RDY/BUSY pin is an open drain output and a typical 3 k Ω pull-up resistor to V_{CC} is required. The pull-up resistor value is dependent on the number of OR-tied RDY/BUSY pins (applies to device types 13 through 17 and 23 through 28).

4.4.4 <u>Set software data protection</u>. Device types 01-05 and 08-12 software data protection offers a method of preventing inadvertent writes. These devices are placed in protected state by writing a series of instructions (see figure 9) to the device. Once protected, writing to the device may only be performed by executing the same sequence of instructions appended with either a byte write operation or page write operation. The waveforms and timing relationships shown on figures 4 - 8 and the test conditions and limits specified in table I shall apply.

4.4.4.1 <u>Reset software data protection</u>. Device types 01-05 and 08-12 protection feature is reset by writing a series of instructions (see figure 10) to the device. The waveforms and timing relationships shown on figures 4 - 8 and the test conditions and limits specified in table I shall apply.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.4 <u>Record of users</u>. Military and industrial users shall inform DLA Land and Maritime when a system application requires configuration control and the applicable SMD. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540.

6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103 and QML-38535. The vendors listed in MIL-HDBK-103 and QML-38535 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DLA Land and Maritime-VA.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	SIZE A		5962-87514
		REVISION LEVEL G	SHEET 23

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 17-07-20

Approved sources of supply for SMD 5962-87514 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at https://landandmaritimeapps.dla.mil/Programs/Smcr/.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN 1/	number	PIN 3/
5962-8751401XA	2/	X28C64DMB-35
5562 01514017(K	3DTT2	PYX28C64-35CWMB
5962-8751401YA	2/	X28C64EMB-35
5562 67514011A	3DTT2	PYX28C64-35L32MB
5962-8751401ZC	<u>2/</u>	X28C64FMB-35
5962-8751402XA	2/	X28C64DMB-30
3902-0731402AA	3DTT2	PYX28C64-30CWMB
5962-8751402YA	<u>2/</u>	X28C64EMB-30
3302-07314021A	3DTT2	PYX28C64-30L32MB
5962-8751402ZC	2/	X28C64FMB-30
5962-8751403XA		X28C64DMB-25
5902-0751403AA	<u>2</u> / 3DTT2	PYX28C64-25CWMB
5962-8751403YA		X28C64EMB-25
5962-67514031A	<u>2</u> / 3DTT2	PYX28C64-25L32MB
5962-8751403ZC	-	X28C64FMB-25
	<u>2/</u>	X28C64DMB-20
5962-8751404XA	<u>2/</u>	
5000 0754404)/4	3DTT2	PYX28C64-20CWMB
5962-8751404YA	<u>2/</u>	X28C64EMB-20
5000 075440470	3DTT2	PYX28C64-20L32MB
5962-8751404ZC	<u>2/</u>	X28C64FMB-20
5962-8751405XA	<u>2/</u>	X28C64DMB-25
	3DTT2	PYX28C64-25CWMB
5962-8751405YA	<u>2/</u>	X28C64EMB-25
5000 0754 40570	3DTT2	PYX28C64X-25L32MB
5962-8751405ZC	<u>2/</u>	X28C64FMB-25
5962-8751406XA	0C7V7	AT28C64B-35DM/883
	3DTT2	PYA28C64B-35CWMB
5962-8751406UA	<u>2/</u>	AT28PC64-35KM/883
5962-8751406YA	0C7V7	AT28C64B-35LM/883
	3DTT2	PYA28C64B-35L32MB
5962-8751407XA	0C7V7	AT28C64B-30DM/883
	3DTT2	PYA28C64B-30CWMB
5962-8751407UA	<u>2/</u>	AT28PC64-30KM/883
5962-8751407YA	0C7V7	AT28C64B-30LM/883
	3DTT2	PYA28C64B-30L32MB
5962-8751408XA	0C7V7	AT28C64B-25DM/883
	3DTT2	PYA28C64B-25CWMB
5962-8751408UA	<u>2</u> /	AT28PC64-25KM/883
5962-8751408YA	0C7V7	AT28C64B-25LM/883
	3DTT2	PYA28C64B-25L32MB
5962-8751409XA	0C7V7	AT28C64B-20DM/883
	3DTT2	PYA28C64B-20CWMB
5962-8751409UA	<u>2</u> /	AT28PC64-20KM/883
5962-8751409YA	0C7V7	AT28C64B-20LM/883
	3DTT2	PYA28C64B-20L32MB

See footnotes at end of table.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN 1/	number	PIN <u>3</u> /
· ··· · ···		
5962-8751410XA	0C7V7	AT28C64B-12DM/883
	3DTT2	PYA28C64B-12CWMB
5962-8751410UA	<u>2</u> /	AT28HC64L-12KM/883
5962-8751410YA	0C7V7	AT28C64B-12LM/883
	3DTT2	PYA28C64B-12L32MB
5962-8751411XA	0C7V7	AT28C64B-90DM/883
	3DTT2	PYA28C64B-90CWMB
5962-8751411UA	<u>2</u> /	AT28HC64L-90KM/883
5962-8751411YA	0C7V7	AT28C64B-90LM/883
	3DTT2	PYA28C64B-90L32MB
5962-8751412XA	<u>2</u> /	AT28HC64B-70DM/883
5962-8751412UA	<u>2</u> /	AT28HC64L-70KM/883
5962-8751412YA	<u>2</u> /	AT28HC64L-70LM/883
5962-8751413XA	0C7V7	AT28C64-35DM/883
	3DTT2	PYA28C64-35CWMB
5962-8751413UA	2/	AT28C64-35KM/883
5962-8751413YA	0C7V7	AT28C64-35LM/883
	3DTT2	PYA28C64-35L32MB
5962-8751413ZA	<u>2</u> /	AT28C64-35FM/883
5962-8751414XA	0C7V7	AT28C64-30DM/883
	3DTT2	PYA28C64-30CWMB
5962-8751414UA	<u>2</u> /	AT28C64-30KM/883
5962-8751414YA	0C7V7	AT28C64-30LM/883
	3DTT2	PYA28C64-30L32MB
5962-8751415XA	0C7V7	AT28C64-25DM/883
	3DTT2	PYA28C64-25CWMB
5962-8751415UA	<u>2</u> /	AT28C64-25KM/883
5962-8751415YA	0C7V7	AT28C64-25LM/883
	3DTT2	PYA28C64-25L32MB
5962-8751415ZA	<u>2</u> /	AT28C64-25FM/883
5962-8751416XA	0C7V7	AT28C64-20DM/883
	3DTT2	PYA28C64-20CWMB
5962-8751416UA	<u>2</u> /	AT28C64-20KM/883
5962-8751416YA	0C7V7	AT28C64-20LM/883
	3DTT2	PYA28C64-20L32MB
5962-8751417XA	0C7V7	AT28C64-15DM/883
	3DTT2	PYA28C64-15CWMB
5962-8751417UA	<u>2</u> /	AT28C64-15KM/883
5962-8751417YA	0C7V7	AT28C64-15LM/883
	3DTT2	PYA28C64-15L32MB
5962-8751418XA	<u>2/</u>	AT28C64-35DM/883
5000 0754 (10)14	3DTT2	PYA28C64X-35CWMB
5962-8751418UA	<u>2/</u>	AT28C64X-35KM/883
5962-8751418YA	<u>2/</u>	AT28C64-35LM/883
	3DTT2	PYA28C64X-35L32MB

DATE: 17-07-20

See footnotes at end of table.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>3</u> /
5962-8751419XA	<u>2</u> /	AT28C64X-30DM/883
	3DTT2	PYA28C64X-30CWMB
5962-8751419UA	<u>2</u> /	AT28C64X-30KM/883
5962-8751419YA	<u>2</u> /	AT28C64X-30LM/883
	3DTT2	PYA28C64X-30L32MB
5962-8751420XA	<u>2</u> /	AT28C64X-25DM/883
	3DTT2	PYA28C64X-25CWMB
5962-8751420UA	<u>2</u> /	AT28C64X-25KM/883
5962-8751420YA	<u>2</u> /	AT28C64X-25LM/883
	3DTT2	PYA28C64X-25L32MB
5962-8751420ZA	<u>2</u> /	AT28C64X-25FM/883
5962-8751421XA	<u>2</u> /	AT28C64X-20DM/883
	3DTT2	PYA28C64X-20CWMB
5962-8751421UA	<u>2</u> /	AT28C64X-20KM/883
5962-8751421YA	<u>2</u> /	AT28C64X-20LM/883
	3DTT2	PYA28C64X-20L32MB
5962-8751422XA	<u>2</u> /	AT28C64X-15DM/883
	3DTT2	PYA28C64X-15CWMB
5962-8751422UA	<u>2</u> /	AT28C64X-15KM/883
5962-8751422YA	<u>2</u> /	AT28C64X-15LM/883
	3DTT2	PYA28C64X-15L32MB
5962-8751423XA	<u>2</u> /	DM28C65-350/B
5962-8751423YA	<u>2</u> /	LM28C65-350/B
5962-8751423ZA	<u>2</u> /	FM28C65-350/B
5962-8751424XA	<u>2</u> /	DM28C65-300/B
5962-8751424YA	<u>2</u> /	LM28C65-300/B
5962-8751424ZA	<u>2</u> /	FM28C65-300/B
5962-8751425XA	<u>2</u> /	DM28C65-250/B
5962-8751425YA	<u>2</u> /	LM28C65-250/B
5962-8751425ZA	<u>2</u> /	FM28C65-250/B
5962-8751426XA	<u>2</u> /	DM28C65-200/B
5962-8751426YA	<u>2</u> /	LM28C65-200/B
5962-8751426ZA	<u></u> /	FM28C65-200/B
5962-8751427XA	2/	DM55C65-250/B
5962-8751427YA	<u></u> /	LM55C65-250/B
5962-8751427ZA	<u></u>	FM55C65-250/B
5962-8751428XA	<u></u> /	AT28C64F-20DM/883
5962-8751428YA	<u></u> /	AT28C64F-20LM/883

DATE: 17-07-20

 $\underline{1}$ / The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.

 $\underline{2}$ / Not available from an approved source. $\underline{3}$ / Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

STANDARDIZED MILITARY DRAWING SOURCE APPROVAL BULLETIN - continued.

DATE: 17-07-20

3DTT2 Pyramid Semiconductor Corp. 1340 Bordeaux Drive Sunnyvale, CA 94089

0C7V7

e2v Inc. dba QP Semiconductor, Inc. 756 Sycamore Drive Milpitas, CA 95035

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in this information bulletin.